IT leaders are already starting to reap the rewards promised by AI and machine learning -- and a recent survey reveals half are considering greater investment as we hit economic headwinds. Credit: monsitj / Getty Images By now most of us understand that, in our current era, artificial intelligence (AI) and its subset machine learning (ML) have little to do with human intelligence. AI/ML is all about recognizing patterns in data and automating discrete tasks, from algorithms that flag fraudulent financial transactions to chatbots that answer customer questions. And guess what? IT leaders appreciate the enormous potential. According to a CIO Tech Poll of IT leaders published in February, AI/ML was considered the most disruptive technology by 62 percent of respondents and the technology with the greatest impact by 42 percent – in both cases double the percentage of AI/ML’s nearest rival, big data analytics. An impressive 18 percent already had an AI/ML solution in production. A July CIO Pandemic Business Impact Survey asked a more provocative question: “How likely is your company to increase consideration of AI/ML as a way to flatten or reduce human capital costs?” Nearly half, 48 percent, were either very or somewhat likely to do so. The implication is that, as the economic downturn deepens, the demand for AI/ML solutions may well intensify. Now’s the time to get your AI/ML strategy in shape. To that end, CIO, Computerworld, CSO, InfoWorld, and Network World have produced five articles that dissect the issues and provide meaningful recommendations. The intelligent enterprise Although AI/ML will doubtless replace some jobs, Matthew Finnegan’s Computerworld article, “AI at work: Your next co-worker could be an algorithm,” focuses on situations where AI systems collaborate with people to extend their productivity. One of the most interesting examples involves “cobots,” which operate alongside workers on the factory floor to enhance human capability. But effective AI/ML solutions come in many forms, as CIO’s Clint Boulton recounts with a fresh batch of case studies, “5 machine learning success stories: An inside look.” It reads like a greatest hits of ML applications: predictive analytics to anticipate healthcare treatment outcomes, intensive data analysis to personalize product recommendations, image analysis to improve crop yields. One clear pattern: Once an organization sees ML success in one area, similar ML technology frequently gets applied in others. Contributor Neil Weinberg highlights a highly practical use of AI/ML with direct benefit to IT in “How AI can create self-driving data centers.” According to Weinberg, AI/ML can handle power, equipment, and workload management, continuously optimizing on the fly – and in the case of hardware, predicting failure – without human intervention. Data center security also benefits from AI/ML capability, both in alerting admins to anomalies and in identifying vulnerabilities and their remediations. ML in all its forms typically begins with finding patterns in large quantities of data. But in many instances, that data may be sensitive, as CSO contributor Maria Korlov reports in “How secure are your AI and machine learning projects?” Korlov observes that data security can often be an afterthought, making some ML systems inherently vulnerable to data breaches. The answer is to establish explicit security policies from the start – and in larger organizations, to dedicate a single executive to manage AI-related risks. So where should you build your AI/ML solution? The public cloud providers offer highly attractive options, but you need to select carefully, argues Martin Heller, contributing editor for InfoWorld. In “How to choose a cloud machine learning platform,” Heller outlines 12 capabilities every cloud ML platform should have and why you need them. With so many data analytics workloads moving to the cloud, it makes sense to add ML to glean greater value – but crucially, you should make sure you can tap into the best ML frameworks and benefit from pre-trained models. We’re still generations away from any AI equivalent of human intelligence. In the meantime, AI/ML will progressively infiltrate almost every type of application, reducing drudgery and offering unprecedented capabilities. No wonder IT leaders believe it will have the greatest impact. Related content brandpost The steep cost of a poor data management strategy Without a data management strategy, organizations stall digital progress, often putting their business trajectory at risk. Here’s how to move forward. By Jay Limbasiya, Global AI, Analytics, & Data Management Business Development, Unstructured Data Solutions, Dell Technologies Jun 09, 2023 6 mins Data Management feature How Capital One delivers data governance at scale With hundreds of petabytes of data in operation, the bank has adopted a hybrid model and a ‘sloped governance’ framework to ensure its lines of business get the data they need in real-time. By Thor Olavsrud Jun 09, 2023 6 mins Data Governance Data Management feature Assessing the business risk of AI bias The lengths to which AI can be biased are still being understood. The potential damage is, therefore, a big priority as companies increasingly use various AI tools for decision-making. By Karin Lindstrom Jun 09, 2023 4 mins CIO Artificial Intelligence IT Leadership brandpost Rebalancing through Recalibration: CIOs Operationalizing Pandemic-era Innovation By Kamal Nath, CEO, Sify Technologies Jun 08, 2023 6 mins CIO Digital Transformation Podcasts Videos Resources Events SUBSCRIBE TO OUR NEWSLETTER From our editors straight to your inbox Get started by entering your email address below. Please enter a valid email address Subscribe