Many organizations struggle with their data. But more than that, they struggle with effectively managing their information assets and tend to overlook the key role that people play in this initiative. People, processes and technology need to be integrated in order to create an effective and lasting data management strategy. Over time many organizations have developed a piecemeal approach to their IT management. Applications are developed or acquired as needed. Over several years this can lead to data silos, incompatible applications, and inconsistent insight into data. In many cases, organizations add data sources as needed and expand or limit access accordingly. Over years this can lead to dozens of applications and data stores that do not integrate with one another. Consequently, if organizations do not align their business strategy with their data management framework overall value is difficult, if not impossible, to defend. Data Management Strategy Involves More Than Data Managing these types of environments require alignment between business processes and technology requirements. This means that all analytics projects should be business-oriented and data management requirements should support business goals and needs. The reality for many organizations, however, is that IT and business goals are kept and managed separately, or at least not aligned well enough to implement using an organization-wide approach. The alignment of business strategy with data management is important to ensure that technology investments provide the insight needed for organizations to make the right decisions in a timely fashion. This requires selecting tools that support current and future strategic and business oriented goals. Unfortunately, this is easier said than done. The problem with data management is that it is messy. As more data ends up within an analytical database, data lakes or other multiple data sources, the way it is managed becomes pivotal to business success. Data quality always becomes an issue due to inconsistent data entry, combining different sources into one, etc. Data quality challenges over time that aren’t dealt with can become exorbitant. Adding disparate applications and departments acting independently, creates additional challenges because each department may have a different view of what entails revenue or customer, making it difficult to create a single approach to data management and identify the importance of each information entity. Looking at the business implications and impact related to these data challenges means being prepared for the following outcomes, which is by no means exhaustive: Inaccurate decision making Ineffective marketing initiatives High customer churn Lack of visibility into behaviors and patterns Inability to adequately plan and forecast Bad competitive advantage Inability to identify opportunities, threats, and competitive environment Creating an environment that supports the level of alignment needed for overall data management success requires evaluating a few key areas within the organization, and committing to the necessary change management to ensure long-term success. The following sections provide the first steps for organizations looking to make this transition. How strategy and data management help overall quality By understanding the business needs and importance of data, organizations can identify the rules associated with information. For instance, how information is structured, how it relates to other data and departments, what its business value is, and by understanding how different data elements relate more broadly across the organization. This in turn, can provide the basis for a set of processes that manage data quality over time. By having good quality, organizations can ensure the information they access is valid. Instead of arguing over inconsistencies, organizations can ask questions and get the answers they need. Understanding the end business goals helps an organization commit to ongoing quality. Data that supports business strategy Although data quality and data management remains the realm of IT, developing successful analytical insights requires a commitment from business. This is where strategy comes in. Identifying an organization’s key business challenges helps create an overall vision that can be aligned through technology adoption. When organizations combine their business and IT agendas they can create a holistic approach to data management and ensure a greater value proposition from their technology investments. Doing so effectively requires a corporate culture that supports change, agility and data driven outlooks. Where organizations go wrong Much of this sounds intuitive to many, but unfortunately there are many organizations that overlook the benefits of aligning business strategy and IT projects. Their analytics environments end up growing based on a piecemeal approach with different departments having access to different data that might not be the same or accurate. Once several segregated analytics projects exist, organizations start to look for a way to create a centralized infrastructure. Within this reality, organizations require a way to step back and identify the best environment for their needs, even if that requires a net new implementation. Overall, creating the best approach for data driven success requires the integration of technologies that can support dynamic changes in information access and insight and the people and processes to help drive and support these infrastructures. Related content opinion Understanding data governance Focusing on the business intelligence (BI) marketplace gives me insight into some of the common challenges organizations face in relation to their data management strategies. By Lyndsay Wise Sep 06, 2016 3 mins Business Intelligence IT Governance Analytics opinion How the needs of mid-sized organizations help drive analytics accessibility Much of my focus within the business intelligence market has been covering the technologies, offerings and analytics adoption of small and mid-sized organizations.* During the past several years, I have noticed a large market shift benefiting mid-siz By Lyndsay Wise Mar 28, 2016 4 mins Business Intelligence Analytics opinion Evaluating business intelligence in the cloud Many organizations struggle with their cloud business intelligence implementations. Here are the key considerations to look at before embarking on your own cloud BI initiative. By Lyndsay Wise Mar 09, 2016 4 mins Business Intelligence Analytics Cloud Computing Podcasts Videos Resources Events SUBSCRIBE TO OUR NEWSLETTER From our editors straight to your inbox Get started by entering your email address below. Please enter a valid email address Subscribe