Car Tech: the Connected Car Arrives

Automobile technology has become so advanced that today's cars are essentially computers with wheels. So why aren't we using them to surf the Web, communicate with other cars or order food at nearby restaurants?

1 2 Page 2
Page 2 of 2

These infrastructure signals could theoretically work in conjunction with sensors that are already in cars. Today, many of the most advanced cars -- such as the Volvo S60, the Audi A8, the Infiniti M37X and the Ford Edge -- have complex sensor networks that can scan in front of the car, control brakes and steering, and even nudge the vehicle back into a lane automatically. If communications capabilities were added to those sensors, a vehicle that senses an icy road might transmit that information not only to nearby cars, but also to a roadside terminal (say, attached to a stop sign) and even beyond that to several other endpoints that in turn transmit the warning to other drivers.

Phil Ames, a senior staff engineer at Intel who works on embedded wireless communications, envisions a future in which car and infrastructure sensors track and communicate everything that's going on, including whether the driver is paying attention. So, for instance, a road sign might send out a wireless signal warning about the prevalence of deer in the area. The car's sensors would receive the signal and go on high alert for a deer jumping out in front of the car, simultaneously preparing the car for sudden braking and audibly warning the driver of the danger.

Related: Car tech: Building the zero-fatality car

But car-to-infrastructure communications won't necessarily stop with roadside signs and sensors. In the next few years, cars will be capable of connecting in a much more robust way to their surroundings, including local businesses. Ford's Prasad calls this the "last inch" problem, which has to do with the location-based information fed to a driver and how that information is displayed. It's one thing to have the wireless connections available, but it's another to use the connections to make driving easier and more worthwhile.

"It is not so much about wireless in the car but how cars are part of the broader physical infrastructure," says Prasad. "The infrastructure looks at who is coming to town and what services could be offered. The car will look for restaurants, places to room for the night, or a movie theater."

Volvo's Gustavsson says the company is working with mobile telecommunications vendor Ericsson on a possible scenario where cars can transmit diagnostic data and other information about a vehicle's health to service stations in certain urban areas. The idea is that you would pay a monthly fee to a repair shop or gas station to constantly monitor your vehicle. You would get notices about real-time service needs or even, say, an alert that you should buy gas now because the next station is too far away.

Some of these features are already available. OnStar, for example, can monitor your vehicle and let you know that you need an oil change or that your tires are wearing down. A similar service, Mercedes mbrace, also provides real-time remote monitoring and can even send a tow truck if you're stalled at the side of the road. What Gustavsson is describing is more localized: the local repair shop monitoring your vehicle within a specified range.

Safety and integration challenges

The connected car will open up new money-making opportunities for car makers and their partners -- including developers of in-car apps and makers of dashboard interface systems, as well as hotels, gas stations and other businesses that cater to travelers. Even the new safety features will boost revenues from car sales, since drivers will pay extra for vehicles that protect them from crashes. Peterson notes that according to AutoPacific's driver surveys, roughly one-third of people who buy Ford cars today do so because of the technical features such as Internet connectivity.

However, as with any wireless connection, there are also concerns about connected car safety and security. Researchers have proven that Bluetooth, cellular networks and other entry points into your car's systems are vulnerable to determined hackers. There's also the more basic problem of distracted driving -- as drivers deal with more and more onscreen data and feeds, will they be less aware of, and slower to respond to, what's happening outside their cars?

According to the NHTSA, 20% of the 1.5 million crashes that resulted in injury in the U.S. in 2009 involved reports of distracted driving, which the government defines as "any nondriving activity a person engages in that has the potential to distract him or her from the primary task of driving and increase the risk of crashing." In addition to taking your eyes off the road or hands off the wheel, this includes "taking your mind off what you're doing." Not surprisingly, U.S. Secretary of Transportation Ray LaHood has spoken out against infotainment devices in cars, saying they contribute to distracted driving.

Another hurdle is integration. Any IT professional who has deployed a complex ERP system or has tried to link communications tools from different vendors knows that integration is one of computing's greatest challenges. When the computer has four wheels and speeds along at 70 mph, the challenges are even greater.

So how will car companies integrate all of the technologies inside a car and then make sure they connect to systems in other cars and along the roadways? And how will they do that in a way that keeps drivers and other vehicles safe? "That question is way above my pay grade," jokes Peterson. "There are very smart engineers working on this, and they decide what is possible and what they can't even allow at higher speeds."

The Department of Transportation makes suggestions about the safety of in-car IT systems, but manufacturers aren't required to follow them, according to Ford's Hall. Nevertheless, it is in the automakers' best interests to prevent distracted-driving accidents. In addition to carefully vetting the apps it allows to run in its vehicles, "Ford takes proactive steps to limit distractions while driving, including locking our visual content such as sports scores, as well as limiting navigation destination entry to just voice -- no typing on the screen," says Hall.

But having manufacturers police themselves on safety has sometimes led to problems. Peterson cites BMW's early-2000s iDrive system for controlling the car's climate, audio, navigation and more as an example of too-complicated technology that drew drivers' attention away from the road. "Designed by engineers for engineers, the system was practically impossible to decipher," he says, adding that it's up to manufacturers and designers to "clearly understand what the distractions are and make sure their vehicles minimize the distraction. The key is ease of use."

As for data security and integration, the DSRC network is being designed with both issues in mind. The DOT's plan is to have all vehicle-to-vehicle and vehicle-to-infrastructure communications transmitted over the closed network, which will keep cars' data sequestered from the Internet and provide a single communications platform for car makers to work with. According to attorney Laurenza, recent DOT policy papers point to a DSRC certification process for all sensors and wireless connections in a car.

However, the DSRC network is still a work in progress. Part of the challenge, according to Peterson, is getting all of the car companies to agree on standard protocols, not to mention exactly what to communicate over the network. No car companies have yet announced vehicles that will work with DSRC, but they say they're making progress.

"We are actively developing the technology and working with our government and automaker partners globally to help deliver it as quickly and affordably possible," says Ford spokesperson Wes Sherwood.

GM is taking a somewhat different approach. Rather than building the technology into the car itself, the company is developing portable devices and smartphone apps that make use of DSRC. The company, which recently demonstrated such a device, says this approach will make DSRC communications available to a greater range of drivers.

But the integration woes don't end with the communications network. Another headache has to do with protecting proprietary information, such as the data gathered by a car's sensors. As Volvo's Gustavsson notes, it's one thing to work with a third party when it comes to interactive maps or streaming Twitter feeds, but something else entirely when a partner's app taps into, say, the actual brake sensor on a car.

Due to companies' concerns about protecting trade secrets, it's likely that the automakers themselves will develop the various endpoint systems and related encryption to make sure no one can steal sensor data, Gustavsson says.

That might make integration more difficult, but, as VW's Lee explains, we're talking about a car with very complex internal systems moving at highway speeds, so any outside connection to check on diagnostics or to transmit other sensor data from the car has to be thoroughly verified.

To keep hackers from interfering, car makers will use strong encryption and send the encrypted data over the closed DSRC band, says Gustavsson.

Other concerns: Liability, privacy and more

Attorney Laurenza points out that the new technology might raise concerns about liability. Citing his earlier example about cars communicating with one another to avoid collisions, he wonders who would be liable if a car transmitted faulty information to another car and someone was killed as a result. For example, a car might send the wrong signal, or a sensor on the road could communicate the wrong information, or data might become corrupted during transmission.

Similarly, there are questions about who owns the data that's collected and transmitted by cars, Laurenza says. And that concern is likely to grow if the Motor Vehicle Safety Act of 2010 is passed. This proposed legislation would require that "black box" recorders similar to those in airplanes be included in all new vehicles by 2015.

And the black box itself is changing: Instead of just storing data, newer versions will use wireless signals such as DSRC to communicate data about the car's state in real time to the black box vendor, which will store the data for later use.

"There could be a question, if a legal issue arose, about who owns the data that goes out over the network," says Laurenza. "That is an issue the DOT is looking at. There are systems linked to the car manufacturers as well, and who gains access depends on how the data is transmitted."

Insurance companies, for example, might be very interested in knowing where and when their customers drive, how fast, how many close calls they have, and so on. "An insurance company might set more accurate premiums based on the technology in the car," he says.

This raises another concern: privacy. Do you really want your car to transmit every move you make?

Laurenza says that the privacy issues are not as critical as other legal concerns, because the data transmitted is anonymized by the automaker and does not relate directly to the individual driver. But Senators Al Franken (D-Minn.) and Chris Coons (D-Del.), among others, have expressed doubt over the effectiveness of data anonymization technology, citing "a broad body of research showing that it is extraordinarily difficult to successfully anonymize highly personal data like location."

The senators were responding to a recent OnStar announcement in which the company said it had changed its policy and planned continue to track data from cars -- including location, odometer readings, vehicle diagnostics and more -- even after customers had stopped using the OnStar service, and that it would sell anonymized data to third parties. It set up the policy on an opt-out basis, meaning former customers would have to tell OnStar that they did not want to be tracked.

Under severe criticism from customers and lawmakers, and facing a possible FTC probe, the company reversed course and made the policy an opt-in option, meaning former customers could request such tracking from OnStar if they so desired. (The company reserves the right to sell anonymized data from customers who opt in.)

The OnStar privacy flap shows that data privacy is very much on consumers' minds, whether car makers and service providers like it or not.

Ready or not...

Despite all the legal, technical, security and privacy issues that have yet to be worked out, the connected car is already here. Wi-Fi and 3G connections are making it possible to feed movies and music to cars, send real-time traffic and weather data, and track location and diagnostic information.

In the coming years, such connections will become available in more and more vehicles, providing more information and perhaps even changing the way we drive. As Peterson suggests, this opens up a new world of possibilities, but it also means that the car companies will have to work with one another and with government agencies to make the connected car truly useful, safe, and not too intrusive.

John Brandon is a former IT manager at a Fortune 100 company who now writes about technology. He has written more than 2,500 articles in the past 10 years. Follow him on Twitter (@jmbrandonbb.

This story, "Car Tech: the Connected Car Arrives" was originally published by Computerworld.

Copyright © 2011 IDG Communications, Inc.

1 2 Page 2
Page 2 of 2
Discover what your peers are reading. Sign up for our FREE email newsletters today!