Machine data analytics specialist Glassbeam is updating its Internet of Things analytics platform with advanced machine learning and real-time analytics capabilities via integration with the Apache Spark in-memory cluster computing framework. Credit: Thinkstock With an eye toward enhancing its Internet of Things (IoT) analytics platform with advanced machine learning and real-time analytics capabilities, machine data analytics specialist Glassbeam today released a new version of the platform that tightly integrates it with Apache Spark. Spark is a cluster computing framework designed to sit on top of Hadoop Distributed File System (HDFS) in place of Hadoop MapReduce. With support for in-memory cluster computing, Spark can achieve performance up to 100x faster than Hadoop MapReduce in-memory or 10x faster on disk, making it well-suited to machine learning algorithms. [Related: 10 Hot Internet of Things Startups ] We’re seeing growing demand for real-time analytics as organizations seek to deliver richer insights to decision-makers and their partners and customers, faster,” says Jason Stamper, analyst, Data Platforms & Analytics, 451 Research. “While the Internet of Things may still be in its infancy, that too will require rapid analytics and machine learning capabilities. Since it is already tracking 1.2 billion sensor readings per day, Glassbeam has some expertise in this field, and we see its integration with the Apache Spark data processing engine as another step in the right direction.” Puneet Pandit, CEO and co-founder of Glassbeam, notes that the Glassbeam SCALAR cloud-based analytics platform was architected with Cassandra as a distributed data processing architecture that scales both linearly and horizontally across thousands of nodes. Spark, on the other hand, is a purpose-built scalable and distributed in-memory compute architecture. Together, Pandit says, you get the best of both worlds: A super fast, scalable IoT analytics solution for large-scale data processing. [Related: Microsoft Adds IoT, Big Data Orchestration Services to Azure ] The integration of Apache Spark’s MLlib library — a scalable machine learning library consisting of algorithms and utilities, including classification, regression, clustering, etc. — gives SCALAR machine learning algorithms to perform predictive analytics on large sets of machine data in the cloud. And implementing Apache Spark SQL directly on Cassandra will allow real-time analytics on data as it is streaming in and getting parsed and transformed through the SCALAR platform. Finally, the integration of Spark Streaming means that streaming applications can be built the same way as batch jobs using Spark’s API, which supports both Java and Scala. “Glassbeam goes beyond analytics that narrowly focus on index, search and analysis of simple data formats from IT assets locked away in data centers,” Pandit says. “Built for the Internet of Complex Things, the platform processes large amounts of data with extreme speed, employing advanced machine learning algorithms and real-time analytics. This means our customers can crunch years of data in a very short time to produce rich intelligence that helps avoid problems and totally optimizes business operations.” Follow Thor on Google+ Related content brandpost Rebalancing through Recalibration: CIOs Operationalizing Pandemic-era Innovation By Kamal Nath, CEO, Sify Technologies Jun 08, 2023 6 mins CIO Digital Transformation brandpost It’s time to evolve beyond marketing to create meaningful metaverse moments Insights on the results of the Protiviti and Oxford University survey: Executive Outlook on the Metaverse, 2033 and Beyond By Kim Bozzella Jun 08, 2023 6 mins Digital Transformation feature 10 hottest IT jobs for salary growth in 2023 The demand for tech workers hasn’t slowed down, as rising salaries reveal the most sought-after tech professionals for 2023, according to data from Dice. By Sarah K. White Jun 08, 2023 8 mins Salaries IT Jobs Careers interview Oshkosh CIO Anu Khare on IT’s pursuit of value The specialty truck maker’s IT chief sees tech-enabled transformation being fueled by a relentless focus on strategic fit and customer value — and passionate business involvement. By Dan Roberts Jun 08, 2023 9 mins Automotive Industry Manufacturing Industry IT Strategy Podcasts Videos Resources Events SUBSCRIBE TO OUR NEWSLETTER From our editors straight to your inbox Get started by entering your email address below. Please enter a valid email address Subscribe